ASSIGNMENT III

1. Considn the network below. Inputs are Poisson processes with indicated rates, and the numbers are probabilites of vehicles choosing the indicated direction.

Describe the traffic flow on each branch.

Solution Sketch

Why is the above true?

Use the following two observations.
(i) If $\left\{X_{t}, t \geqslant 0\right\}$ is a Poisson process with rate λ and $\left\{\tilde{X}_{t}, t \geqslant 0\right\}$ is a Poisson process with rate $\tilde{\lambda}$, then $\left\{X_{t}+\tilde{X}_{t}, t \geqslant 0\right\}$ is Poisson with rate $\lambda+\tilde{\lambda}$.
(ii) Let $\left\{X_{t}, t \geqslant 0\right\}$ be a Poisson process with rate入. Let $\left\{B_{n}, n=1,2, \ldots\right\}$ be a Bernoulli process (sequence of lid Bernoullis) with success probability $p>0$. Suppose $\left\{X_{t}, t \geqslant 0\right\}$ and $\left\{B_{t}, t \geqslant 0\right\}$ are independent. Then the process

$$
\begin{aligned}
V_{t}= & \text { number of successes } \\
& \text { by time }
\end{aligned}
$$

is a Poisson process with rate λp.
2. Let Y be a random variable taking values

$$
E=\{a, b, \ldots\}
$$

with distribution

$$
\pi=(\pi(a), \Pi(b), \ldots)
$$

For each $i \in E$, suppose $\left\{X_{t, i}, t \geqslant 0\right\}$ are Poisson processes independent of each other and of Y.

Define

$$
X_{t}=X_{t, Y}
$$

(a) Find $P\left(X_{t}=k\right)$.
(b) Show that in general $\left\{x_{t}, t \geqslant 0\right\}$ does not have independent increments.

Solution Sketch
(a)

$$
\begin{aligned}
& P\left(X_{t, Y}=k\right) \\
& =\sum_{y \in E} P\left(X_{t, Y}=k \mid Y=y\right) \\
& P(Y=y)
\end{aligned} \quad \begin{array}{r}
\sum_{y \in E} P\left(X_{t, y}=k\right) P(Y=y) \\
\left.\begin{array}{l}
\text { (ind. of } X_{t, i} \\
\text { with } Y
\end{array}\right)
\end{array}
$$

(b)

$$
\begin{array}{r}
P\left(X_{t_{2}, Y}-X_{t_{1}, Y} \in A,\right. \\
\left.X_{t_{4}, Y}-X_{t_{3}, Y} \in B\right) \\
=\sum_{y \in E} P\left(X_{t_{2}, Y}-X_{t_{1}, Y} \in A,\right. \\
\left.X_{t_{4}, Y}-X_{t_{5}, Y} \in B \mid Y \leq y\right) \\
P(Y=y) \\
=\sum_{y \in E} P\left(X_{t_{2}, y}-X_{t_{t}, y} \in A,\right. \\
\left.X_{t_{4}, y}-X_{t_{5}, y} \in B\right) \\
P(Y=y) \\
\\
\text { (ind. of } \left.Y Y_{t, j} \text { with } Y\right)
\end{array}
$$

$$
\begin{aligned}
& =\sum_{y \in E} P\left(X_{t_{2}, y}-X_{t_{1}, y} \in A\right) \\
& \times P\left(X_{t_{4}, y}-X_{t, y} \in B\right) \times P(Y=y) \\
& \neq\left(\sum_{y \in E} P\left(X_{t_{2}, y}-X_{t_{1}, y} \in A\right) P(Y=y)\right) \\
& \times\left(\sum_{y \in E} P\left(X_{t_{2}, y}-X_{t_{1}, y} \in A\right) P(Y=y)\right)
\end{aligned}
$$

3. Suppose $\left\{X_{t}, t \geqslant 0\right\}$ has independent and stationary increments, and that
(i) $f(t)=\mathbb{E}\left[X_{t}\right]<\infty$
(ii) f is differentiable.

Show that

$$
f(t)=m_{0}+m_{1} t
$$

where $m_{0}=f(0), \quad m_{1}=f(1)-f(0)$.

Solutim Sketch

$$
\begin{aligned}
f(s+t) & =\mathbb{E}\left[X_{s+t}\right] \\
& =\mathbb{E}\left[X_{s}+X_{s+t}-X_{s}\right] \\
& =f(s)+\mathbb{E}\left[X_{s+t}-X_{s}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\text { st. incl }}{=} f(z)+\mathbb{E}\left[X_{t}-X_{0}\right] \\
& =f(s)+f(t)-f(0)
\end{aligned}
$$

Differentiate w.r.t t to see that

$$
\begin{aligned}
& f^{\prime}(s+t)=f^{\prime}(t) \quad \forall s, t \geqslant 0 . \\
\Rightarrow & f^{\prime}(x)=\text { constant } \\
\Rightarrow & f(t)=m_{1} t+m_{0}, t \geqslant 0 .
\end{aligned}
$$

Set $t=0$ to see that $m_{0}=f(0)$.
Set $t=1$ to see that $m_{1}=f(n)-f(0)$.
4. Let $\left\{X_{t}, t \geqslant 0\right\}$ be a stationary Poisson process.

An arrival from this process at time $s \in[0, t]$ is classified as Type I with probability $p(s)$ and Type II with probability $1-p(s)$.

Let $\left\{Y_{t}, t \geqslant 0\right\}$ and $\left\{Z_{t}, t \geqslant 0\right\}$ represent arrivals corresponding to the Type I and Type II processes. Show that $\left\{Y_{t}, t \geqslant 0\right\}$ and $\left\{Z_{t}, t \geqslant 0\right\}$ are Poisson with rate λq and $\lambda(1-q)$ Where

$$
q=\frac{1}{t} \int_{0}^{t} p(s) d s
$$

Solution Sketch
Let $\left\{Y_{t}, t \geqslant 0\right\}$ correspond to the type I arrival process.

Notice:

$$
\begin{aligned}
& P\left(Y_{t}=n\right)= \\
& \quad \sum_{m=n}^{\infty} P\left(Y_{t}=n \mid X_{t}=m\right) \\
& P\left(X_{t}=m\right)
\end{aligned}
$$

We know that

$$
\begin{aligned}
& \left(S_{1}, S_{2}, \ldots, S_{X_{t}}\right) \mid X_{t}=m \\
& \quad \stackrel{d}{=}\left(U_{(1)}, U_{(2)}, \ldots, U_{(m)}\right)
\end{aligned}
$$

Whre $U_{1}, U_{2}, \ldots, U_{m} \stackrel{i i d}{\sim}$ Unif $(0, t)$.

$$
\begin{aligned}
& P\left(Y_{t}=n \mid X_{t}=m\right) \\
&=\binom{m}{n}\left(\int_{0}^{t} p(s) \frac{1}{t} d s\right)^{q} \\
&\left(1-\int_{0}^{t} p(s) \frac{1}{t} d s\right)^{n-n}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P\left(Y_{t}\right.=n) \\
&=\sum_{m=n}^{\infty}\binom{m}{n} q^{n}(1-q)^{m-n} \\
& \frac{e^{-\lambda t}(\lambda t)^{m}}{m!} \\
&=e^{-\lambda t} \sum_{m=n}^{\infty} \frac{1}{n!(m-n)!}(\lambda t)^{n}(\lambda(1-q) t)^{m-n} \\
&=\frac{e^{-\lambda t}(\lambda q t)^{n}}{n!} \sum_{k=0}^{\infty} \frac{(\lambda(1-q) t)^{k}}{k!} \\
&=\frac{e^{-\lambda q t}(\lambda q t)^{n}}{n!}
\end{aligned}
$$

5. Cell phone calls handled by a tower occur according to a Poisson process with parameter λ. Each call lasts for a period of time X having distribution G. Find the distributim of the number of calls being handled by the tower at time T.
(Assume no ongoing calls at time o.)

Solution Sketch

A call arriving at \& will still be active at T if $X>T-s$, that a call arriving at s will be active at T with probability

$$
p(z)=P(X>T-x)=\bar{G}(z) .
$$

Now we see that the number of calls being handled at T is the Type I process described in Problem 4. Thus.
no. of calls being handled at time $T \sim \operatorname{Poisson}\left(\lambda \int_{0}^{T} G(s) d s\right)$.

